New physics searches in \(\gamma \) leptonic decays

Yu-Jie Zhang

nophy0@gmail.com

Department of Physics, Beihang University, Beijing 100191, People's Republic of China

> QWG2010@Fermilab 21 May 2010

New physics searches in Υ leptonic decays (Outline)

Introduction

Standard Model prediction of Y **leptonic decay**

Impact from New Physics of Υ **leptonic decay**

Leptonic decay of $\eta_b(\eta_c)$

Summary

In collaboration with Hua-Sheng Shao and Kuang-Ta Chao.

1 Introduction

- The hunting of NP is one of the hottest topics for theorist and experimentalist.
- The B factories gave a very clear channel to test SM, just as $\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$, $\Upsilon \to l^+l^ (l=\tau,\mu)$. Recent Babar measured the ratio [1, 2]

$$R_{\tau\mu} = \frac{Br[\Upsilon \to \tau^+ \tau^-]}{Br[\Upsilon \to \mu^+ \mu^-]} = 1.005 \pm 0.013 \pm 0.022,\tag{1}$$

The Leading Order SM prediction of $R_{\tau\mu}$ is 0.992[3, 4]. It is consistent with experimental date within error bar.

- ★ The SM predictions should be compared with experimental data beyond tree level.
- \star At the same time, $R_{\tau\mu}$ is sensitively on the coupling of $h(A_0)b\bar{b}$ and $h(A_0)l^+l^-$ within NP.
- It is an excellent probe for the new Higgs interactions in some NP Model, where the coupling of Higgs $b\bar{b}$ and Higgs l^+l^- is enhanced [5].
- Then we should calculate the ratio $R_{\tau\mu}$ and compare with the experimental data to test SM or hunt NP.

There are some theoretical and experimental works related with it.

- The QCD corrections of $\Upsilon \to l^+ l^-$ have been calculated to two-loop [6].
- We have calculated Υ decay to charm jet[7].
- The CLEO got the ratio $R_{\tau\mu} = 1.02 \pm 0.02 \pm 0.05$ in 2006 [8].
- The MC simulation of $\Upsilon \to l^+ l^-$ has been studied, where large logarithms have been resummed[9].
- The pseudoscalar Higgs A_0 is also introduced in decay and spectroscopy of bottomonium [10, 11].
- Babar has searched for a light Higgs boson A_0 in the radiative decay of $\Upsilon(nS) \to \gamma A_0, A_0 \to l^+ l^-$ for n=1,2,3. They found no evidence for such processes in the mass range $0.212 GeV \le M_{A0} \le 9.3 GeV$ and no narrow structure with $4.03 GeV \le M_{\tau^+\tau^-} \le 10.10 GeV$ [12].
- $\Re \eta_b$ leptonic decay is discussed too.[13, 14, 15].

2 Standard Model prediction

The LO QED Feynman diagrams of $\Upsilon \to l^+ l^-$ are shown in Fig.1.

Fig.1 Part of the Feynman diagrams of $\Upsilon \to l^+ l^-$ within SM.

Followed the process of $\Upsilon \to c\bar{c}$ in Ref.[7], we can get the LO amplitude and decay width of $\Upsilon \to l^+ l^-$,

$$\mathcal{M}_{LO}[\Upsilon \to l^{+}l^{-}] = \sqrt{\frac{16\pi}{3M_{\Upsilon}^{3}}} \alpha |R(0)| \bar{l} \notin l,$$

$$\Gamma_{LO}[\Upsilon \to l^{+}l^{-}] = \frac{4|R(0)|^{2}\alpha^{2}\sqrt{1 - 4r_{l}}(1 + 2r_{l})}{9M_{\Upsilon}^{2}}, \tag{2}$$

where $r_l = M_l^2/M_{\Upsilon}^2$, |R(0)| is the radial wave function of Υ at origin, ϵ is the polarization vector of Υ . If expanded with r_l , we can get

$$\Gamma_{LO}[\Upsilon \to l^+ l^-] = \frac{4|R(0)|^2 \alpha^2}{9M_{\Upsilon}^2} \left(1 - 6r_l^2 + \mathcal{O}\left(r_l^3\right)\right).$$
 (3)

D

$$R_{ll\prime}^{LO} = \frac{\sqrt{1 - 4M_l^2/M_{\Upsilon}^2}(1 + 2M_l^2/M_{\Upsilon}^2)}{\sqrt{1 - 4M_{l\prime}^2/M_{\Upsilon}^2}(1 + 2M_{l\prime}^2/M_{\Upsilon}^2)} = 1 - 6(M_l^4 - M_{l\prime}^4)/M_{\Upsilon}^4 + \dots, (4)$$

and

$$\frac{M_{\mu}^{2}}{M_{\Upsilon}^{2}} = 1.2 \times 10^{-4}$$

$$\frac{M_{\tau}^{2}}{M_{\Upsilon}^{2}} = 3.5 \times 10^{-2}$$
(5)

- In experimental data, $R_{\tau\mu} = \frac{N_{sig\tau}}{\epsilon_{\tau\tau}} \cdot \frac{\epsilon_{\mu\mu}}{N_{sig\mu}}$, where $N_{sig\mu}$ ($N_{sig\tau}$) indicates the number of signal events. and $\epsilon_{\tau\tau}(\epsilon_{\mu\mu})$ is the efficiency.
- $R_{\tau\mu}$ is very clear in both theory and experiment.

- We take into account the NLO QED correction here.
- \bigcirc The renormalization of lepton and b quark wave function, and electron charge should appear.
- \bigcirc We use $D=4-2\epsilon$ space-time dimension to regularize the divergence. Onmass-shell (OS) scheme is selected for $Z_{2b(l)}$ and modified minimal-subtraction ($\overline{\rm MS}$) scheme for Z_e :

$$\delta Z_{2f}^{\text{OS}} = -\frac{Q_f^2 \alpha}{4\pi} \left[\frac{1}{\epsilon_{\text{UV}}} + \frac{2}{\epsilon_{\text{IR}}} - 3\gamma_E + 3\ln\frac{4\pi\mu^2}{M_f^2} + 4 \right],$$

$$\delta Z_e^{\overline{\text{MS}}} = \frac{\alpha}{6\pi} (3 + \frac{10}{3}) \left(\frac{1}{\epsilon_{\text{UV}}} - \gamma_E + \ln(4\pi) \right),$$
(6)

where μ is the renormalization scale, γ_E is the Euler's constant, f = b, l, and Q_f is the charge of fermion f in unit of electron charge.

 \bigcirc If we ignore the self energy of photon and the renormalization of α , the NLO QED correction is just replaced $4\alpha_s/3$ with α from $\Upsilon \to c\bar{c}$ [7].

In numerical calculation, the parameters are selected as:

$$M_e = 0.5110 MeV, \quad M_d = 0.00 MeV, \quad M_u = 0.00 MeV,$$
 $M_{\mu} = 0.1057 GeV, \quad M_s = 0.10 GeV, \quad M_c = 1.30 GeV,$
 $M_{\tau} = 1.7768 GeV, \quad M_b = 4.73 GeV, \quad \alpha = 1/132.33.$ (7)

Here $M_b = M_{\Upsilon}/2$. The renormalization scale μ is selected as $\mu = M_{\Upsilon}$.

Tab1 The numerical decay width of $\Upsilon \to l^+ l^- (l = \tau, \mu)$ and $R_{\tau\mu}$ within SM.

	$\Gamma[au]$	$\Gamma[\mu]$	$R_{ au\mu}$	
LO	$2.8221 \frac{ R(0) ^2}{10^7 GeV^2}$	$2.8444 \frac{ R(0) ^2}{10^7 GeV^2}$	0.9922	
NLO QED	$2.7773 \frac{ R(0) ^2}{10^7 GeV^2}$	$2.7965 \frac{ R(0) ^2}{10^7 GeV^2}$	0.9932	
Babar	-	-	1.005 ± 0.026	

We should calculate the uncertainty for the theoretical prediction.

- © For the NLO QED corrections have been taken into account, the uncertainty from higher order QED contributions is $\mathcal{O}(\alpha^2/\pi^2) \sim 6 \times 10^{-6}$
- ♦ The event is selected through four charge particle. So the uncertainty from QCD contributions are come from $\Upsilon \to l^+l^-gg \to l^+l^- + uncharged particles$. $\Gamma[\Upsilon \to l^+l^-gg]/\Gamma[\Upsilon \to l^+l^-]$ is about 2%(0.2%) for $\mu^+\mu^-(\tau^+\tau^-)$. As a naive estimate, the ratio of $gg \to uncharged particles$ should less than 1/3. And uncertainty is less then 0.6%.
 - ▶ Z can contribute to $\Upsilon \to l^+ l^-$ at tree level. We can get

$$\frac{\mathcal{M}_{LO}^{Z}[\Upsilon \to l^{+}l^{-}]}{\mathcal{M}_{LO}^{\gamma}[\Upsilon \to l^{+}l^{-}]} = f_{z} \frac{\overline{l} \left[(4\sin^{2}\theta_{W} - 1) \not\in + \not\in \gamma^{5} \right] l}{\overline{l} \not\in l}, \tag{8}$$

$$f_z = \frac{M_{\Upsilon}^2 \left(3 - 4\sin^2 \theta_W\right)}{16 \left(M_{\Upsilon}^2 - M_Z^2\right) \left(1 - \sin^2 \theta_W\right) \sin^2 \theta_W}.$$
 (9)

Here $f_z \sim -M_\Upsilon^2/M_Z^2 \sim -10^{-2}$. Then the uncertainty from vector current of Z on $R_{\tau\mu}$ should be $\mathcal{O}(f_z\left(1-4\sin^2\theta_W\right)(R_{\tau\mu}^{QED}-R_{\tau\mu}^{LO}))\sim\mathcal{O}(10^{-6})$. Here superscript QED means NLO QED has been taken into account. The axial vector current the ratio with a factor $\mathcal{O}(M_\Upsilon^2M_I^2/M_Z^4)\sim\mathcal{O}(10^{-5})$ only.

▲ Within SM, it should be considered that $\Upsilon \to \gamma \eta_b$, where $\eta_b \to l^+ l^-$ is followed [11]. The energy of γ is about 70 MeV in $\Upsilon \to \gamma \eta_b$ and $Br[\eta_b \to l^+ l^- (+\gamma_{soft})] \sim 10^{-8}$ [13, 14]. For $\Upsilon \to \gamma \eta_b$ is a P wave process, we can estimate $Br[\Upsilon \to \gamma \eta_b]$ through

$$\frac{\Gamma[\Upsilon \to \gamma \eta_b]}{\Gamma[J/\psi \to \gamma \eta_c]} \sim \left(\frac{e_b}{e_c}\right)^2 \left(\frac{M_{J/\psi}(M_{\Upsilon} - M_{\eta_b})}{M_{\Upsilon}(M_{J/\psi} - M_{\eta_c})}\right)^3. \tag{10}$$

Then $Br[\Upsilon \to \gamma \eta_b] \sim 10^{-5}$. So $Br[\Upsilon \to \gamma \eta_b] \times Br[\eta_b \to l^+l^-(+\gamma_{soft})] \sim 10^{-12}$. This can be ignored safely.

Tab.2 The uncertainties of $R_{\tau\mu}$ within SM.

	Order	Numerical
QED	α^2/π^2	6×10^{-6}
QCD	$<\alpha_s^2/\pi^2 \times \ln \frac{M_\mu^2}{M_b^2}/3 \times \frac{1}{3}$ $M_\Upsilon^2 M_l^2/M_Z^4 \text{ or } \alpha M_l^2/(M_Z^2 \pi)$	$< 6 \times 10^{-3}$
$Z(W^{\pm}, H)$	$M_\Upsilon^2 M_l^2/M_Z^4$ or $lpha M_l^2/(M_Z^2\pi)$	4×10^{-6}
η_b	$Br[\Upsilon \to \gamma \eta_b] \times Br[\eta_b \to \bar{l}^+ l^-]$	1×10^{-12}
Total	_	< 0.006
$R_{ au\mu}^{SM}$	1	0.993 ± 0.006
$R_{ au\mu}^{Babar}$	1	$1.005 \pm 0.013 \pm 0.022$

The uncertainties of $R_{\tau\mu}$ within SM are listed in Tab.2. Then SM prediction is

$$R_{\tau\mu} = 0.993 \pm 0.006. \tag{11}$$

Compared with Eq.(1), it is consistent with the experimental data in the error bar and a little less than the center value.

Most of the uncertainty come from the QCD contributions in Eq(11). It is difficult to measure. So we present a better approach to test the SM,

$$R_{\tau\mu}(E_{soft}) = \Gamma[\Upsilon \to \tau^+ \tau^- + X] / \Gamma[\Upsilon \to \mu^+ \mu^- + X] \Big|_{E_X < E_{soft}}$$
 (12)

. If we select $E_{soft} \sim 5 GeV$, $\Gamma[\Upsilon \to l^+ l^- + gg]|_{M_X < E_{soft}}$ is less than $\Gamma[\Upsilon \to l^+ l^-]/1000$, then the impact on $R_{\tau\mu}(E_{soft})$ is less than 2×10^{-5} , but the large logarithms appear

$$L = \ln \frac{4E_s^2}{M_{\Upsilon}^2} \ln \frac{4M_l^2}{M_{\Upsilon}^2}.$$
 (13)

We resum the large logarithms with YFS resummation scheme[16, 9],

$$Y = \frac{-\alpha}{\pi} \left(2 \left(\ln r_l + 1 \right) \ln \frac{2E_s}{M_{\Upsilon}} + \frac{\ln r_l}{2} - \frac{\pi^2}{3} + 1 \right). \tag{14}$$

The resumed results are

$$\Gamma_{LO}^{res} = e^{Y} \Gamma_{LO},$$

$$\Gamma_{NLO}^{res} = (e^{Y} - 1 - Y) \Gamma_{LO} + \Gamma_{QED}.$$
(15)

If we select $E_s = 0.2 GeV$. Including the uncertainty, the ratio is

$$R_{\tau\mu}(0.2GeV) = 1.0628 \pm 0.0011.$$
 (16)

The effect of QCD is very weak in this channel. $R_{\tau\mu}(E_{soft})$ can be compared with experimental data more precise.

Fig.2 The dependence of $R_{\tau\mu}(E_{soft})$ on the soft cut E_s within SM.

Tab.3 The numerical decay width of processes $\Upsilon \to l^+ l^- (l = \tau, \mu)$ in unit of $\frac{|R(0)|^2}{10^7 GeV^2}$ and $R_{\tau\mu}(E_{soft})$ within SM. $E_s = 0.1$ means the soft cut is 0.1 GeV.

Ð		
$\Gamma[au]$	$\Gamma[\mu]$	$R_{\tau\mu}(E_{soft})$
2.8221	2.8444	0.9922
2.7277	2.4925	1.0944
2.6744	2.3932	1.1174
2.6768	2.4272	1.1028
2.6954	2.4678	1.0922
2.6970	2.4916	1.0824
2.7158	2.5411	1.0688
2.7168	2.5564	1.0628
2.7385	2.6236	1.0438
2.7389	2.6312	1.0409
	2.8221 2.7277 2.6744 2.6768 2.6954 2.6970 2.7158 2.7168 2.7385	$\begin{array}{c cccc} \Gamma[\tau] & \Gamma[\mu] \\ 2.8221 & 2.8444 \\ 2.7277 & 2.4925 \\ 2.6744 & 2.3932 \\ 2.6768 & 2.4272 \\ 2.6954 & 2.4678 \\ 2.6970 & 2.4916 \\ 2.7158 & 2.5411 \\ 2.7168 & 2.5564 \\ 2.7385 & 2.6236 \\ 2.7389 & 2.6312 \\ \end{array}$

3 Impact from New Physics

NP may play a role in the discrepancy between theoretical prediction and experimental data of $R_{\tau\mu}$ in Eq.(11) and Eq.(1). We only consider the scheme of light Higgs h and pseudoscalar Higgs A_0 here.

Fig.3 Part of the Feynman diagrams of $\Upsilon \to l^+ l^-$ which $A_0(h)$ involved. The Feynman diagrams which exchange $A_0(h)$ between $b\bar{b}$ are ignored for it should not change the ratio $R_{\tau\mu}$.

Fig.3 Feynman rule of $hf\bar{f}$ and $A_0f\bar{f}$

- $ightharpoonup C_{A0(h)}$ are different in the special model, we consider them as parameters.
- ► For it is IR finite which $A_0(h)$ involved in $\Upsilon \to \gamma_{soft} l^+ l^-$, so its contributions are suppressed by $E_s/M_b \sim 4 \times 10^{-2}$ when compared with virtual processes.
- ▶ So we ignored the real processes and included the virtual processes only when we considered the impact of $A_0(h)$ to $R_{\tau\mu}(E_{soft})$.

The $A_0(h)$ impact on $\Upsilon \to \tau^+ \tau^-$ as a function of $M_{A0(h)}$. The $A_0(h)$ impact on real contributions ignored for it is suppressed by E_s/M_b and $\Upsilon \to \mu^+ \mu^-$ is ignored for it is suppressed by M_μ^2/M_τ^2 . The Feynman diagrams which exchange $A_0(h)$ between $b\bar{b}$ are ignored for it should not change the ratio $R_{\tau\mu}$.

- ▶ If we consider the $R_{\tau\mu}$, we should include the real correction too.
- If we select $10.3 GeV < M_{A0(h)} < 10.6 GeV$, $\Gamma^{A0}[\tau]/\Gamma^{LO}[\tau] \sim -4 \times 10^{-6} C_{A0}^2 + 5 \times 10^{-10} C_{A0}^4$, and $\Gamma^h[\tau]/\Gamma^{LO}[\tau] \sim 3 \times 10^{-6} C_h^2 + 8 \times 10^{-10} C_h^4$.
- The corresponding $R_{\tau\mu}(E_{soft})$ with $10.3 GeV < M_{A0(h)} < 10.6 GeV$, is $\Gamma^{A0}[\tau]/\Gamma^{LO}[\tau] \sim -5 \times 10^{-6} C_{A0}^2$ and $\Gamma^h[\tau]/\Gamma^{LO}[\tau] \sim 3 \times 10^{-6} C_h^2$.

4 Leptonic decay of η_b

It is also studied by Jia[14] within SM and by Rashed within NP[15].

Part of Feynman diagrams for $\eta_b \to \tau^+ \tau^-$.

The amplitude

$$\mathcal{A}\Big(P(2p_1) \to l^-(p_2) + l^+(p_3)\Big) = -iC^P \frac{R_S(0)}{\sqrt{4\pi}} \frac{\sqrt{3m_l}}{4m_P^{5/2}} \bar{u}(p_2) \gamma^5 v(p_3). \tag{17}$$

Where m_l is mass of lepton, and m_P is mass if pseudoscalar heavy quarkonium. And there are three contribution for C^P :

$$C^{P} = C_{A}^{P} + C_{Z}^{P} + C_{\gamma}^{P}, (18)$$

 C_{γ}^{P} correspond to the contributions of γ at one-loop level. And C_{Z}^{P} correspond to the contributions of Z^{0} at tree level. These two terms correspond standard model contribution. Within the new physics model, CP-odd Higgs A_{0} is introduced, and it's contributions correspond C_{A}^{P} .

The decay width of $P \rightarrow l^+ l^-$ can be get through Eq.(17)

$$\Gamma(P \to l^+ l^-) = |C|^2 \frac{|R_S(0)|^2}{4\pi m_P^4} \frac{3m_l^2 \sqrt{1 - 4m_l^2/m_P^2}}{128\pi}$$
 (19)

Then C_A^P can be calculated directory:

$$C_A^{\eta_b} = \frac{e^2 \csc^2 \theta_W C_{A0}^2}{(r_A - 1)r_W}$$

$$C_A^{\eta_c} = \frac{e^2 \csc^2 \theta_W}{(r_A - 1)r_W}$$
(20)

Where θ_W is weak mixing Weinberg angle, e is charge of electron, and r_i is m_i^2/m_P^2 for $i=Z,W,A^0,l$. The C_Z^P can be calculated directly too:

$$C_Z^{\eta_b} = -\frac{e^2 \csc^2 \theta_W \sec^2 \theta_W}{r_Z}$$

$$C_Z^{\eta_c} = \frac{e^2 \csc^2 \theta_W \sec^2 \theta_W}{r_Z}$$
(21)

$$C_{\gamma}^{\eta_b} = -\frac{e^4}{27\pi^2\sqrt{1-4r_l}} \left\{ -24\tanh^{-1}\left(\sqrt{1-4r_l}\right) + 12\text{Li}_2\left(\frac{\sqrt{1-4r_l}-1}{\sqrt{1-4r_l}+1}\right) + 3\log\left(-\frac{2r_l+\sqrt{1-4r_l}-1}{2r_l}\right) \left[\log\left(-\frac{2r_l+\sqrt{1-4r_l}-1}{2r_l}\right) + 2i\pi\right] + \pi^2 \right\}$$

The numerical decay width in units of keV within standard model. We use $|R_S^{\eta_b}(0)|^2 = 6.477 \text{ GeV}^3$, $|R_S^{\eta_c(1S)}(0)|^2 = 0.810 \text{ GeV}^3$, $|R_S^{\eta_c(2S)}(0)|^2 = 0.529 \text{ GeV}^3$, $m_{\eta_b} = 9.4 \text{ GeV}$, $m_{\eta_c(1S)} = 2.980 \text{ GeV}$, and $m_{\eta_c(2S)} = 3.637 \text{ GeV}$. Here 3.16E-16 means 3.16×10^{-16} . $\Gamma_{total}[\eta_b] \sim 10 \text{MeV}$.

	η_b	$\eta_c(1S)$	$\eta_c(2S)$
$\Gamma_Z(e^+e^-)$	3.87E-12	4.84E-13	3.16E-13
$\Gamma_{\gamma}(e^{+}e^{-})$	1.29E-10	1.53E-08	4.94E-09
$\Gamma_{SM}(e^+e^-)$	1.74E-10	1.51E-08	4.87E-09
$\Gamma_Z(\mu^+\mu^-)$	1.65E-07	2.04E-08	1.33E-08
$\Gamma_{\gamma}(\mu^{+}\mu^{-})$	2.71E-07	2.15E-05	7.45E-06
$\Gamma_{SM}(\mu^+\mu^-)$	7.10E-07	2.09E-05	7.15E-06
$\Gamma_Z(\tau^+\tau^-)$	4.33E-05	_	8.11E-07
$\Gamma_{\gamma}(\tau^{+}\tau^{-})$	6.32E-06	-	2.91E-05
$\Gamma_{SM}(\tau^+\tau^-)$	5.08E-05	-	3.18E-05

The numerical decay width of $\eta_b \to \tau^+ \tau^-$ in units of keV. The unit of A^0 mass is GeV. $\Gamma_{SM}(\eta_b \to \tau^+ \tau^-) = 5.08 \times 10^{-5} \text{ keV}$. $\Gamma_{total}[\eta_b] \sim 10 \text{MeV}$.

m_A C_{A0}	1	5	10	25	50
20	2.94E-5	1.60E-3	3.24E-2	1.34E+0	2.17E+1
50	4.76E-5	6.72E-6	3.10E-4	2.07E-2	3.55E-1
100	5.00E-5	3.36E-5	6.95E-6	9.06E-4	1.96E-2
150	5.04E-5	4.25E-5	2.29E-5	9.74E-5	3.39E-3
200	5.06E-5	4.60E-5	3.35E-5	1.22E-5	8.91E-4

 $\Gamma_{NP}(\eta_b \to \tau^+ \tau^-)/\Gamma_{SM}(\eta_b \to \tau^+ \tau^-)$ as a function of CP-odd Higgs mass. Here $C_{A0}=25$.

 $\Gamma_{NP}(\eta_b \to \tau^+ \tau^-)/\Gamma_{SM}(\eta_b \to \tau^+ \tau^-)$ as a function of C_{A0} . Here $m_A = 100$ GeV.

 $\Gamma_{NP}(\eta_c(2S) \to \tau^+\tau^-)/\Gamma_{SM}(\eta_c(2S) \to \tau^+\tau^-)$ as a function of m_A . Here the coupling $C^c_{A0} \times C^l_{A0} = 1$.

5 Summary

- ► Compared with the recent Babar's data $R_{\tau\mu} = 1.005 \pm 0.013 \pm 0.022$, we find that SM prediction $R_{\tau\mu} = 0.993 \pm 0.006$ is consistent with the experimental data and a little less than the center value.
- We present a better approach to test the SM in leptonic decay of Υ , $R_{\tau\mu}(E_{soft}) = \Gamma[\Upsilon \to \tau^+\tau^- + X]/\Gamma[\Upsilon \to \mu^+\mu^- + X]|_{E_X < E_{soft}}$. After resumming the large logarithms, we get $R_{\tau\mu}(E_{soft})$ with a soft cut at the precision level of 0.1%. The effect of QCD is very weak in this channel. It can be compared with experimental data more precise.
- ▶ We also consider the possible solution, light Higgs h and pseudo scalar Higgs A_0 . To clarify the discrepancy, more work should be done by theorist and experimentalist.
- ▶ Leptonic decay of η_b within SM and NP is studied too.

References

- [1] E. Guido and f. t. B. Collaboration, "Lepton Universality Test in $\Upsilon(1S)$ decays at BaBar," 0910.0423.
- [2] The BABAR Collaboration, P. del Amo Sanchez et al., "Test of lepton universality in Upsilon(1S) decays at BaBar," 1002.4358.
- [3] M. A. Sanchis-Lozano, "Leptonic universality breaking in Υ decays as a probe of new physics," Int. J. Mod. Phys. A19 (2004) 2183, hep-ph/0307313.
- [4] M. A. Sanchis-Lozano, "Searching for new physics in leptonic decays of bottomonium," Mod. Phys. Lett. A17 (2002) 2265–2276, hep-ph/0206156.
- [5] E. Accomando et al., "Workshop on CP Studies and Non-Standard Higgs Physics," hep-ph/0608079.
- [6] M. Beneke, A. Signer, and V. A. Smirnov, "Two-loop Correction to the Leptonic Decay of Quarkonium," *Phys. Rev. lett.* **80** (1998) 2535–2538, hep-ph/9712302.
- [7] Y.-J. Zhang and K.-T. Chao, "Y decay to two-charm quark jets as a Probe of the Color Octet Mechanism," Phys. Rev. D78 (2008) 094017, 0808.2985.
- [8] **CLEO** Collaboration, D. Besson *et al.*, "First observation of $\Upsilon(3S) \to \tau^+\tau^-$ and tests of lepton universality in Υ decays," *Phys. Rev. Lett.* **98** (2007) 052002, hep-ex/0607019.
- [9] K. Hamilton and P. Richardson, "Simulation of QED radiation in particle decays using the YFS formalism," JHEP 07 (2006) 010, hep-ph/0603034.
- [10] F. Domingo, U. Ellwanger, and M.-A. Sanchis-Lozano, "Bottomoniom spectroscopy with mixing of η_b states and a light CP-odd Higgs," *Phys. Rev. Lett.* **103** (2009) 111802, 0907.0348.
- [11] E. Fullana and M.-A. Sanchis-Lozano, "Hunting a light CP-odd non-standard Higgs boson through its tauonic decay at a (Super) B factory," *Phys. Lett.* **B653** (2007) 67–74, hep-ph/0702190.
- [12] **BABAR** Collaboration, "Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions $\Upsilon \to \gamma A_0$," *Phys. Rev. Lett.* **103** (2009) 081803, 0905.4539. "Search for a low-mass Higgs boson in $\Upsilon(3S) \to \gamma A_0$, $A_0 \to \tau^+ \tau^-$ at BABAR," *Phys. Rev. Lett.* **103** (2009) 181801, 0906.2219.
- [13] Y.-J. Zhang and K.-T. Chao, "Leptonic decays of the pseudoscalar heavy quarkonium and CP-odd Higgs," to be submited.
- [14] Y. Jia and W.-L. Sang, "Observation prospects of leptonic and Dalitz decays of pseudoscalar quarkonia," 0906.4782.
- [15] A. Rashed, M. Duraisamy and A. Datta, "Probing light pseudoscalar, axial vector states through $\eta_b \to \tau^+ \tau^-$," arXiv:1004.5419 [hep-ph].
- [16] D. R. Yennie, S. C. Frautschi, and H. Suura, "The infrared divergence phenomena and high-energy processes," Ann. Phys. 13 (1961) 379–452.

Thanks!

Backup

The LO decay width

$$\Gamma_{LO}[\Upsilon \to l^+ l^-] = \frac{4|R(0)|^2 \alpha^2 \sqrt{1 - 4r_l} (1 + 2r_l)}{9M_{\Upsilon}^2},$$
(22)

The NLO decay width piece is

 $x_{\beta} = (1 - \sqrt{1 - 4r_l})/(1 + \sqrt{1 - 4r_l})$

$$\Gamma_{NLO}[\Upsilon \to l^+ l^-)] = \frac{4|R(0)|^2 \alpha^2}{9M_{\Upsilon}^2} \sqrt{1 - 4r_l} \left(1 + 2r_l\right) \left\{ 1 + \frac{\alpha}{4\pi\sqrt{1 - 4r_l} \left(1 + 2r_l\right)} \right] \\
(32 - 32r_l^2) \text{Li}_2(x_{\beta}) + (16 - 16r_l^2) \left(\text{Li}_2(-x_{\beta}) + \ln(x_{\beta}) \ln(1 - x_{\beta}) \right) \\
+ (2 + 4r_l) \sqrt{1 - 4r_l} \left(6\ln(x_{\beta}) - 8\ln(1 - x_{\beta}) - 4\ln(1 + x_{\beta}) \right) \\
+ (3 + 18r_l) \sqrt{1 - 4r_l} + (-12 + 8r_l + 28r_l^2) \ln(x_{\beta}) + (8 - 32r_l^2) \ln(x_{\beta}) \ln(1 + x_{\beta}) \right] \\
+ \text{Terms independent on } r_l \right\}, \tag{23}$$